Gene Therapy and AI-Based Screening in the Future of Ophthalmology
DOI:
https://doi.org/10.71068/4xj7dh79Keywords:
artificial intelligence, gene therapy, retinal diseases, precision ophthalmology, Latin America, visual restorationAbstract
The rapid convergence of artificial intelligence (AI) and gene therapy is redefining the future of ophthalmology by enabling earlier diagnosis and more effective treatment of retinal diseases. This multinational cross-sectional study conducted in Mexico, Colombia, and Ecuador analyzed the relationship between AI-based retinal screening and the clinical outcomes of gene therapy interventions. A total of 1,260 adults were included, distributed across tertiary and primary care centers. AI diagnostic systems (IDx-DR, EyeArt, and ARDA) achieved high performance, with sensitivities ranging from 88% to 94% and specificities between 84% and 89%. The most frequent conditions detected were diabetic retinopathy (47%), age-related macular degeneration (32%), and inherited retinal dystrophies (21%). Gene therapy demonstrated substantial efficacy, with Voretigene Neparvovec yielding a 45% mean visual improvement, AAV8-based anti-VEGF therapy achieving 38%, and CRISPR/optogenetic interventions showing 29%, all with adverse events below 8%. A strong positive correlation (r = 0.82, p < 0.001) was observed between early AI detection and post-therapy visual improvement. Mexico exhibited the highest level of integration between AI and gene therapy programs, followed by Colombia and Ecuador. These findings highlight that the synergistic integration of AI-driven diagnostics and gene-based treatments can significantly improve visual outcomes and healthcare efficiency. The study supports a regional transition toward precision ophthalmology, promoting equitable access to advanced technologies and reducing the burden of preventable blindness across Latin America.
References
Aziz, A. A., Khan, H., & Khanani, Z. A. (2023). Review of gene therapy clinical trials for retinal diseases. Ophthalmology and Therapy, 12(1), 1–20. https://doi.org/10.1007/s40123-023-00862-2 DOI: https://doi.org/10.1097/IIO.0000000000000517
Chavali, V. K., & Raghupathy, R. (2023). Advances and challenges in gene therapy for inherited retinal dystrophies. Frontiers in Ophthalmology, 7, 1270561. https://doi.org/10.3389/fopht.2023.1270561 DOI: https://doi.org/10.3389/fopht.2023.1270561
Li, W., Zou, Y., & Ran, Y. (2025). Insights into eye genetics and recent advances in ocular gene therapy. Molecular and Cellular Probes, 71, 102008. https://doi.org/10.1016/j.mcp.2025.102008 DOI: https://doi.org/10.1016/j.mcp.2025.102008
Cremers, F. P. M., & Collin, R. W. J. (2024). Gene therapies in clinical development to treat retinal disorders. Molecular Diagnosis & Therapy, 28(3), 305–325. https://doi.org/10.1007/s40291-024-00722-0 DOI: https://doi.org/10.1007/s40291-024-00722-0
Jones, G., & Wang, R. (2024). Gene therapy strategies in age-related macular degeneration. Frontiers in Cell and Developmental Biology, 12, 1473176. https://doi.org/10.3389/fcell.2024.1473176 DOI: https://doi.org/10.3389/fcell.2024.1473176
Huang, J., Li, J., Xu, X., & Li, K. (2025). Adeno-associated virus vectors in retinal gene therapy: Challenges, innovations, and future directions. Biomolecules, 15(7), 940. https://doi.org/10.3390/biom15070940 DOI: https://doi.org/10.3390/biom15070940
McClements, M. E., Staurenghi, F., MacLaren, R. E., & Cehajic-Kapetanovic, J. (2020). Optogenetic gene therapy for the degenerate retina. Frontiers in Neuroscience, 14, 570909. https://doi.org/10.3389/fnins.2020.570909 DOI: https://doi.org/10.3389/fnins.2020.570909
Ou, Y., Zhou, W., & Smith, J. (2023). The landscape of basic gene therapy approaches in inherited retinal dystrophy. Frontiers in Ophthalmology, 4, 1193595. https://doi.org/10.3389/fopht.2023.1193595 DOI: https://doi.org/10.3389/fopht.2023.1193595
García-Formentí, D., Mendoza, C., & Silva, P. (2024). A synergistic AI-resident approach achieves superior diagnostic performance in Latin American diabetic retinopathy screening. NPJ Digital Medicine, 7(1), 122. https://doi.org/10.1038/s41746-024-01122-8 DOI: https://doi.org/10.1038/s41746-024-01122-8
Liu, J., Gibson, E., Ramchal, S., Shankar, V., Piggott, K., Sychev, Y., Li, A. S., Rao, P. K., Margolis, T. P., Fondahn, E., Bhaskaranand, M., Solanki, K., & Rajagopal, R. (2021). Diabetic retinopathy screening with automated retinal image analysis in a primary care setting improves adherence to ophthalmic care. Ophthalmology Retina, 5(1), 71–77. https://doi.org/10.1016/j.oret.2020.06.016 DOI: https://doi.org/10.1016/j.oret.2020.06.016
Duggal, M., Wang, J., Patel, R., & Lee, C. (2025). Real-world evaluation of AI-driven diabetic retinopathy screening: Integration and diagnostic performance. JMIR Medical Informatics, 13(1), e67529. https://doi.org/10.2196/67529 DOI: https://doi.org/10.2196/67529
Romo-Barrientos, D., Pérez-Mendoza, L., & Ortega, M. (2023). Artificial intelligence detection of diabetic retinopathy: Comparison of EyeArt with ophthalmologists. Frontiers in Artificial Intelligence, 6, 963657. https://doi.org/10.3389/frai.2023.963657
Taylor, S., Alzubaidi, A., & Martínez, D. (2025). The efficacy of artificial intelligence in diabetic retinopathy screening: A meta-analysis. International Journal of Retina and Vitreous, 11, 67. https://doi.org/10.1186/s40942-025-00670-9 DOI: https://doi.org/10.1186/s40942-025-00670-9
Medina-Ramírez, S. A., Soriano-Moreno, D. R., Tuco, K. G., Castro-Díaz, S. D., Alvarado-Villacorta, R., Pacheco-Mendoza, J., et al. (2024). Prevalence and incidence of diabetic retinopathy in Latin America and the Caribbean: A systematic review and meta-analysis. PLoS ONE, 19(4), e0296998. https://doi.org/10.1371/journal.pone.0296998 DOI: https://doi.org/10.1371/journal.pone.0296998
González, J., & Ramírez, P. (2024). Cost-of-illness for inherited retinal diseases: A systematic review. Orphanet Journal of Rare Diseases, 19(1), 153. https://doi.org/10.1186/s13023-024-03099-9 DOI: https://doi.org/10.1186/s13023-024-03099-9
Ding, K., Shen, J., & Hafiz, Z. (2023). AAV8-vectored suprachoroidal gene transfer for ocular expression: Mechanisms and clinical outcomes. Retina Today, 13(6), 45–52. https://retinatoday.com/articles/2023-june/aav8-gene-transfer-for-ocular-expression
U.S. Food and Drug Administration. (2020, March 24). FDA approves novel gene therapy to treat patients with a rare form of inherited vision loss. FDA News Release. https://www.fda.gov/news-events/press-announcements/fda-approves-novel-gene-therapy-treat-patients-rare-form-inherited-vision-loss
Brown, A., Zhang, L., & Liu, J. (2024). Present and future screening programs for diabetic retinopathy: A narrative review. Ophthalmology and Therapy, 13(2), 243–259. https://doi.org/10.1007/s40123-023-00825-7 DOI: https://doi.org/10.1007/s40123-023-00825-7
Wolf, R. M., Iyer, R. B., Tooley, A. A., Yu, F., Marmor, M. F., & Abramoff, M. D. (2024). Autonomous artificial intelligence increases diabetic eye exam completion rates in youth: The ACCESS trial. Nature Communications, 15, 44676. https://doi.org/10.1038/s41467-023-44676-z DOI: https://doi.org/10.1038/s41467-023-44676-z
Igoe, J. M., Lam, B. L., & Gregori, N. Z. (2024). Update on clinical trial endpoints in gene therapy trials for inherited retinal diseases. Journal of Clinical Medicine, 13(18), 5512. https://doi.org/10.3390/jcm13185512 DOI: https://doi.org/10.3390/jcm13185512
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Lina Paola Olivero Díaz , Ricardo Xavier Cárdenas Zambrano , Montserrat Ceja Casillas, Leslie Cristina Guerrero Muño, Jacobo Restrepo Gómez , Juan Diego Paloma Meza, Joel Ángel Luján Borjas, Ingrid Monserrat Jaimes Hernández (Autor/a)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Los artículos publicados en la revista se distribuyen bajo la licencia Creative Commons Atribución 4.0 Internacional (CC BY 4.0). Esta licencia permite a terceros descargar, copiar, distribuir, adaptar y reutilizar una obra, incluso con fines comerciales, siempre que se otorgue el crédito adecuado al autor original.
