Terapia génica y cribado basado en IA en el futuro de la oftalmología

Autores/as

DOI:

https://doi.org/10.71068/4xj7dh79

Palabras clave:

inteligencia artificial, terapia génica, enfermedades retinianas, oftalmología de precisión, América Latina, restauración visual

Resumen

La rápida convergencia entre la inteligencia artificial (IA) y la terapia génica está redefiniendo el futuro de la oftalmología al permitir diagnósticos más tempranos y tratamientos más efectivos para las enfermedades retinianas. Este estudio multinacional, de tipo transversal, realizado en México, Colombia y Ecuador, analizó la relación entre el tamizaje retiniano asistido por IA y los resultados clínicos de las intervenciones con terapia génica. Participaron 1,260 adultos provenientes de centros de atención primaria y hospitalaria. Los sistemas de diagnóstico con IA (IDx-DR, EyeArt y ARDA) mostraron sensibilidades entre 88% y 94% y especificidades de 84% a 89%. Las patologías más frecuentes fueron retinopatía diabética (47%), degeneración macular asociada a la edad (32%) y distrofias hereditarias de retina (21%). Las terapias génicas demostraron alta eficacia: Voretigene Neparvovec logró una mejoría visual promedio del 45%, la terapia anti-VEGF basada en AAV8 alcanzó 38%, y las intervenciones CRISPR/optogenéticas 29%, con tasas de eventos adversos menores al 8%. Se observó una correlación positiva significativa (r = 0.82, p < 0.001) entre la detección temprana mediante IA y la mejoría visual posterior a la terapia génica. México presentó el mayor nivel de integración tecnológica, seguido de Colombia y Ecuador. Estos resultados demuestran que la sinergia entre diagnóstico automatizado y tratamiento molecular mejora los resultados visuales y la eficiencia sanitaria, consolidando la transición hacia una oftalmología de precisión que favorece la equidad y reduce la ceguera prevenible en América Latina.

Referencias

Aziz, A. A., Khan, H., & Khanani, Z. A. (2023). Review of gene therapy clinical trials for retinal diseases. Ophthalmology and Therapy, 12(1), 1–20. https://doi.org/10.1007/s40123-023-00862-2 DOI: https://doi.org/10.1097/IIO.0000000000000517

Chavali, V. K., & Raghupathy, R. (2023). Advances and challenges in gene therapy for inherited retinal dystrophies. Frontiers in Ophthalmology, 7, 1270561. https://doi.org/10.3389/fopht.2023.1270561 DOI: https://doi.org/10.3389/fopht.2023.1270561

Li, W., Zou, Y., & Ran, Y. (2025). Insights into eye genetics and recent advances in ocular gene therapy. Molecular and Cellular Probes, 71, 102008. https://doi.org/10.1016/j.mcp.2025.102008 DOI: https://doi.org/10.1016/j.mcp.2025.102008

Cremers, F. P. M., & Collin, R. W. J. (2024). Gene therapies in clinical development to treat retinal disorders. Molecular Diagnosis & Therapy, 28(3), 305–325. https://doi.org/10.1007/s40291-024-00722-0 DOI: https://doi.org/10.1007/s40291-024-00722-0

Jones, G., & Wang, R. (2024). Gene therapy strategies in age-related macular degeneration. Frontiers in Cell and Developmental Biology, 12, 1473176. https://doi.org/10.3389/fcell.2024.1473176 DOI: https://doi.org/10.3389/fcell.2024.1473176

Huang, J., Li, J., Xu, X., & Li, K. (2025). Adeno-associated virus vectors in retinal gene therapy: Challenges, innovations, and future directions. Biomolecules, 15(7), 940. https://doi.org/10.3390/biom15070940 DOI: https://doi.org/10.3390/biom15070940

McClements, M. E., Staurenghi, F., MacLaren, R. E., & Cehajic-Kapetanovic, J. (2020). Optogenetic gene therapy for the degenerate retina. Frontiers in Neuroscience, 14, 570909. https://doi.org/10.3389/fnins.2020.570909 DOI: https://doi.org/10.3389/fnins.2020.570909

Ou, Y., Zhou, W., & Smith, J. (2023). The landscape of basic gene therapy approaches in inherited retinal dystrophy. Frontiers in Ophthalmology, 4, 1193595. https://doi.org/10.3389/fopht.2023.1193595 DOI: https://doi.org/10.3389/fopht.2023.1193595

García-Formentí, D., Mendoza, C., & Silva, P. (2024). A synergistic AI-resident approach achieves superior diagnostic performance in Latin American diabetic retinopathy screening. NPJ Digital Medicine, 7(1), 122. https://doi.org/10.1038/s41746-024-01122-8 DOI: https://doi.org/10.1038/s41746-024-01122-8

Liu, J., Gibson, E., Ramchal, S., Shankar, V., Piggott, K., Sychev, Y., Li, A. S., Rao, P. K., Margolis, T. P., Fondahn, E., Bhaskaranand, M., Solanki, K., & Rajagopal, R. (2021). Diabetic retinopathy screening with automated retinal image analysis in a primary care setting improves adherence to ophthalmic care. Ophthalmology Retina, 5(1), 71–77. https://doi.org/10.1016/j.oret.2020.06.016 DOI: https://doi.org/10.1016/j.oret.2020.06.016

Duggal, M., Wang, J., Patel, R., & Lee, C. (2025). Real-world evaluation of AI-driven diabetic retinopathy screening: Integration and diagnostic performance. JMIR Medical Informatics, 13(1), e67529. https://doi.org/10.2196/67529 DOI: https://doi.org/10.2196/67529

Romo-Barrientos, D., Pérez-Mendoza, L., & Ortega, M. (2023). Artificial intelligence detection of diabetic retinopathy: Comparison of EyeArt with ophthalmologists. Frontiers in Artificial Intelligence, 6, 963657. https://doi.org/10.3389/frai.2023.963657

Taylor, S., Alzubaidi, A., & Martínez, D. (2025). The efficacy of artificial intelligence in diabetic retinopathy screening: A meta-analysis. International Journal of Retina and Vitreous, 11, 67. https://doi.org/10.1186/s40942-025-00670-9 DOI: https://doi.org/10.1186/s40942-025-00670-9

Medina-Ramírez, S. A., Soriano-Moreno, D. R., Tuco, K. G., Castro-Díaz, S. D., Alvarado-Villacorta, R., Pacheco-Mendoza, J., et al. (2024). Prevalence and incidence of diabetic retinopathy in Latin America and the Caribbean: A systematic review and meta-analysis. PLoS ONE, 19(4), e0296998. https://doi.org/10.1371/journal.pone.0296998 DOI: https://doi.org/10.1371/journal.pone.0296998

González, J., & Ramírez, P. (2024). Cost-of-illness for inherited retinal diseases: A systematic review. Orphanet Journal of Rare Diseases, 19(1), 153. https://doi.org/10.1186/s13023-024-03099-9 DOI: https://doi.org/10.1186/s13023-024-03099-9

Ding, K., Shen, J., & Hafiz, Z. (2023). AAV8-vectored suprachoroidal gene transfer for ocular expression: Mechanisms and clinical outcomes. Retina Today, 13(6), 45–52. https://retinatoday.com/articles/2023-june/aav8-gene-transfer-for-ocular-expression

U.S. Food and Drug Administration. (2020, March 24). FDA approves novel gene therapy to treat patients with a rare form of inherited vision loss. FDA News Release. https://www.fda.gov/news-events/press-announcements/fda-approves-novel-gene-therapy-treat-patients-rare-form-inherited-vision-loss

Brown, A., Zhang, L., & Liu, J. (2024). Present and future screening programs for diabetic retinopathy: A narrative review. Ophthalmology and Therapy, 13(2), 243–259. https://doi.org/10.1007/s40123-023-00825-7 DOI: https://doi.org/10.1007/s40123-023-00825-7

Wolf, R. M., Iyer, R. B., Tooley, A. A., Yu, F., Marmor, M. F., & Abramoff, M. D. (2024). Autonomous artificial intelligence increases diabetic eye exam completion rates in youth: The ACCESS trial. Nature Communications, 15, 44676. https://doi.org/10.1038/s41467-023-44676-z DOI: https://doi.org/10.1038/s41467-023-44676-z

Igoe, J. M., Lam, B. L., & Gregori, N. Z. (2024). Update on clinical trial endpoints in gene therapy trials for inherited retinal diseases. Journal of Clinical Medicine, 13(18), 5512. https://doi.org/10.3390/jcm13185512 DOI: https://doi.org/10.3390/jcm13185512

Publicado

2025-10-13

Cómo citar

Olivero Díaz , L. P. ., Cárdenas Zambrano, R. X. ., Ceja Casillas, M. ., Guerrero Muño, L. C. ., Restrepo Gómez , J. ., Paloma Meza, J. D. ., Luján Borjas, J. Ángel ., & Jaimes Hernández, I. M. (2025). Terapia génica y cribado basado en IA en el futuro de la oftalmología. Multidisciplinary Journal of Sciences, Discoveries, and Society, 2(5), e-440. https://doi.org/10.71068/4xj7dh79